Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746234

RESUMEN

NADPH, a highly compartmentalized electron donor in mammalian cells, plays essential roles in cell metabolism. However, little is known about how cytosolic and mitochondrial NADPH dynamics relate to cancer cell growth rates in response to varying nutrient conditions. To address this issue, we present NADPH composite index analysis, which quantifies the relationship between compartmentalized NADPH dynamics and growth rates using genetically encoded NADPH sensors, automated image analysis pipeline, and correlation analysis. Through this analysis, we demonstrated that compartmentalized NADPH dynamics patterns were cancer cell-type dependent. Specifically, cytosolic and mitochondrial NADPH dynamics of MDA-MB-231 decreased in response to serine deprivation, while those of HCT-116 increased in response to serine or glutamine deprivation. Furthermore, by introducing a fractional contribution parameter, we correlated cytosolic and mitochondrial NADPH dynamics to growth rates. Using this parameter, we identified cancer cell lines whose growth rates were selectively inhibited by targeting cytosolic or mitochondrial NADPH metabolism. Mechanistically, we identified citrate transporter as a key mitochondrial transporter that maintains compartmentalized NADPH dynamics and growth rates. Altogether, our results present a significant advance in quantifying the relationship between compartmentalized NADPH dynamics and cancer cell growth rates, highlighting a potential of targeting compartmentalized NADPH metabolism for selective cancer cell growth inhibitions.

2.
Nano Lett ; 23(16): 7303-7310, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37566825

RESUMEN

Evolution has shaped the development of proteins with an incredible diversity of properties. Incorporating proteins into materials is desirable for applications including biosensing; however, high-throughput selection techniques for screening protein libraries in materials contexts is lacking. In this work, a high-throughput platform to assess the binding affinity for ordered sensing proteins was established. A library of fusion proteins, consisting of an elastin-like polypeptide block, one of 22 variants of rcSso7d, and a coiled-coil order-directing sequence, was generated. All selected variants had high binding in films, likely due to the similarity of the assay to magnetic bead sorting used for initial selection, while solution binding was more variable. From these results, both the assembly of the fusion proteins in their operating state and the functionality of the binding protein are key factors in the biosensing performance. Thus, the integration of directed evolution with assembled systems is necessary to the design of better materials.


Asunto(s)
Proteínas Portadoras , Ensayos Analíticos de Alto Rendimiento , Estreptavidina , Ensayos Analíticos de Alto Rendimiento/métodos , Péptidos/química , Biblioteca de Genes
3.
Anal Methods ; 15(28): 3483-3489, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37424294

RESUMEN

The abundance and low production cost of biomaterial cellulose paper have attracted attention for many applications. Point-of-care (PoC) diagnostic tests have been successfully developed using patterned cellulose paper. Although PoC diagnostic tests are rapid and simple to perform, their sample processing throughput is limited, allowing for only one sample to be evaluated at a time, which restricts potential applications. Thus, it was appealing to expand cellulose-based PoC tests to high-throughput versions to increase their applicability. Here, we present the development of a high-throughput cellulose-based 96-well plate vertical flow pull-down assay that can process 96 tests, is easy to prepare, and can be customized for different detection targets. The device has two key features: (i) patterned cellulose paper for 96 tests that do not require pre-immobilization of capturing reagents, and (ii) reusable sturdy housing. We believe that a variety of applications, including laboratory testing, population surveillance tests, and sizable clinical trials for diagnostic tests, can benefit from the adoption of this cellulose-based 96-well plate assay.


Asunto(s)
Celulosa , Pruebas en el Punto de Atención
4.
Redox Biol ; 64: 102766, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311396

RESUMEN

Catalase is an antioxidant enzyme that catalyzes the rapid conversion of hydrogen peroxide to water and oxygen. Use of catalase as a cancer therapeutic has been proposed to reduce oxidative stress and hypoxia in the tumor microenvironment, both activities which are hypothesized to reduce tumor growth. Furthermore, exposing murine tumors to exogenous catalase was previously reported to have therapeutic benefit. We studied the therapeutic effect of tumor-localized catalases with the aim to further elucidate the mechanism of action. To do this, we engineered two approaches to maximize intratumoral catalase exposure: 1) an injected extracellular catalase with enhanced tumor retention, and 2) tumor cell lines that over-express intracellular catalase. Both approaches were characterized for functionality and tested for therapeutic efficacy and mechanism in 4T1 and CT26 murine syngeneic tumor models. The injected catalase was confirmed to have enzyme activity >30,000 U/mg and was retained at the injection site for more than one week in vivo. The engineered cell lines exhibited increased catalase activity and antioxidant capacity, with catalase over-expression that was maintained for at least one week after gene expression was induced in vivo. We did not observe a significant difference in tumor growth or survival between catalase-treated and untreated mice when either approach was used. Finally, bulk RNA sequencing of tumors was performed, comparing the gene expression of catalase-treated and untreated tumors. Gene expression analysis revealed very few differentially expressed genes as a result of exposure to catalase and notably, we did not observe changes consistent with an altered state of hypoxia or oxidative stress. In conclusion, we observe that sustained intratumoral catalase neither has therapeutic benefit nor triggers significant differential expression of genes associated with the anticipated therapeutic mechanism in the subcutaneous syngeneic tumor models used. Given the lack of effect observed, we propose that further development of catalase as a cancer therapeutic should take these findings into consideration.


Asunto(s)
Antioxidantes , Neoplasias , Animales , Ratones , Catalasa/genética , Catalasa/metabolismo , Antioxidantes/metabolismo , Neoplasias/genética , Estrés Oxidativo , Hipoxia/genética , Peróxido de Hidrógeno/metabolismo , Microambiente Tumoral
5.
Biosens Bioelectron ; 222: 114977, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516633

RESUMEN

Rapid diagnostic tests (RDTs) have shown to be instrumental in healthcare and disease control. However, they have been plagued by many inefficiencies in the laborious empirical development and optimization process for the attainment of clinically relevant sensitivity. While various studies have sought to model paper-based RDTs, most have relied on continuum-based models that are not necessarily applicable to all operation regimes, and have solely focused on predicting the specific interactions between the antigen and binders. It is also unclear how the model predictions may be utilized for optimizing assay performance. Here, we propose a streamlined and simplified model-based framework, only relying on calibration with a minimal experimental dataset, for the acceleration of assay optimization. We show that our models are capable of recapitulating experimental data across different formats and antigen-binder-matrix combinations. By predicting signals due to both specific and background interactions, our facile approach enables the estimation of several pertinent assay performance metrics such as limit-of-detection, sensitivity, signal-to-noise ratio and difference. We believe that our proposed workflow would be a valuable addition to the toolset of any assay developer, regardless of the amount of resources they have in their arsenal, and aid assay optimization at any stage in their assay development process.


Asunto(s)
Técnicas Biosensibles , Sensibilidad y Especificidad , Antígenos , Relación Señal-Ruido , Juego de Reactivos para Diagnóstico , Ensayo de Inmunoadsorción Enzimática
6.
Microbiol Spectr ; 10(5): e0225722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36069616

RESUMEN

As the COVID-19 pandemic continues, countries around the world are switching toward vaccinations and boosters to combat the pandemic. However, waning immunity against SARS-CoV-2 wild-type (WT) and variants have been widely reported. Booster vaccinations have shown to be able to increase immunological protection against new variants; however, the protection observed appears to decrease quickly over time suggesting a second booster shot may be appropriate. Moreover, heterogeneity and waning of the immune response at the individual level was observed suggesting a more personalized vaccination approach should be considered. To evaluate such a personalized strategy, it is important to have the ability to rapidly evaluate the level of neutralizing antibody (nAbs) response against variants at the individual level and ideally at a point of care setting. Here, we applied the recently developed cellulose pulled-down virus neutralization test (cpVNT) to rapidly assess individual nAb levels to WT and variants of concerns in response to booster vaccination. Our findings confirmed significant heterogeneity of nAb responses against a panel of SARS-CoV-2 variants, and indicated a strong increase in nAb response against variants of concern (VOCs) upon booster vaccination. For instance, the nAb response against current predominant omicron variant was observed with medians of 88.1% (n = 6, 95% CI = 73.2% to 96.2%) within 1-month postbooster and 70.7% (n = 22, 95% CI = 66.4% to 81.8%) 3 months postbooster. Our data show a point of care (POC) test focusing on nAb response levels against VOCs can guide decisions on the potential need for booster vaccinations at individual level. Importantly, it also suggests the current booster vaccines only give a transient protective response against some VOC and new more targeted formulations of a booster vaccine against specific VOC may need to be developed in the future. IMPORTANCE Vaccination against SARS-CoV-2 induces protection through production of neutralization antibodies (nAb). The level of nAb is a major indicator of immunity against SARS-CoV-2 infection. We developed a rapid point-of-care test that can monitor the nAb level from a drop of finger stick blood. Here, we have implemented the test to monitor individual nAb level against wild-type and variants of SARS-CoV-2 at various time points of vaccination, including post-second-dose vaccination and postbooster vaccination. Huge diversity of nAb levels were observed among individuals as well as increment in nAb levels especially against Omicron variant after booster vaccination. This study evaluated the performance of this point-of-care test for personalized nAb response tracking. It verifies the potential of using a rapid nAb test to guide future vaccination regimens at both the individual and population level.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2/genética , Anticuerpos Antivirales , Pandemias , COVID-19/prevención & control , Anticuerpos Neutralizantes , Vacunación
7.
Cell Rep Methods ; 2(8): 100273, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35942328

RESUMEN

Neutralizing antibody (NAb) titer is a key biomarker of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but point-of-care methods for assessing NAb titer are not widely available. Here, we present a lateral flow assay that captures SARS-CoV-2 receptor-binding domain (RBD) that has been neutralized from binding angiotensin-converting enzyme 2 (ACE2). Quantification of neutralized RBD in this assay correlates with NAb titer from vaccinated and convalescent patients. This methodology demonstrated superior performance in assessing NAb titer compared with either measurement of total anti-spike immunoglobulin G titer or quantification of the absolute reduction in binding between ACE2 and RBD. Our testing platform has the potential for mass deployment to aid in determining at population scale the degree of protective immunity individuals may have following SARS-CoV-2 vaccination or infection and can enable simple at-home assessment of NAb titer.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Vacunas contra la COVID-19 , Sistemas de Atención de Punto , Anticuerpos Antivirales , COVID-19/diagnóstico
8.
Bioeng Transl Med ; 7(2): e10293, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600666

RESUMEN

There is clinical need for a quantifiable point-of-care (PoC) SARS-CoV-2 neutralizing antibody (nAb) test that is adaptable with the pandemic's changing landscape. Here, we present a rapid and semi-quantitative nAb test that uses finger stick or venous blood to assess the nAb response of vaccinated population against wild-type (WT), alpha, beta, gamma, and delta variant RBDs. It captures a clinically relevant range of nAb levels, and effectively differentiates prevaccination, post first dose, and post second dose vaccination samples within 10 min. The data observed against alpha, beta, gamma, and delta variants agrees with published results evaluated in established serology tests. Finally, our test revealed a substantial reduction in nAb level for beta, gamma, and delta variants between early BNT162b2 vaccination group (within 3 months) and later vaccination group (post 3 months). This test is highly suited for PoC settings and provides an insightful nAb response in a postvaccinated population.

9.
Methods Mol Biol ; 2491: 417-469, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482202

RESUMEN

Many point-of-care diagnostic tests rely on a pair of monoclonal antibodies that bind to two distinct epitopes of a molecule of interest. This protocol describes the identification and generation of such affinity pairs based on an easily produced small protein scaffold rcSso7d which can substitute monoclonal antibodies. These strong binding variants are identified from a large yeast display library. The approach described can be significantly faster than antibody generation and epitope binning, yielding affinity pairs synthesized in common bacterial protein synthesis strains, enabling the rapid generation of novel diagnostic tools.


Asunto(s)
Anticuerpos Monoclonales , Epítopos , Biblioteca de Genes , Inmunoensayo
10.
Lab Chip ; 22(7): 1321-1332, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35226037

RESUMEN

Surveillance of SARS-CoV-2 infection is critical for controlling the current pandemic. Antigen rapid tests (ARTs) provide a means for surveillance. Available lateral flow assay format ARTs rely heavily on nitrocellulose paper, raising challenges in supply shortage. Vertical flow assay (VFA) with cellulose paper as test material attracts much attention as a complementary test approach. However, current reported VFAs are facing challenges in reading the test signal from the bottom face of the test cassette, complicating the test workflow and hindering translation into rapid test application. Here, we address this gap with an enhanced VFA against SARS-CoV-2 N protein that adapts a cellulose pull-down test format allowing (1) one-step sample application at the top of the test cassette and (2) readout of the test signal from the top. We also demonstrate the feasibility of translating the enhanced VFA into a point-of-care application that can help in SARS-CoV-2 surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pandemias , Sistemas de Atención de Punto , Sensibilidad y Especificidad
11.
Cell Chem Biol ; 29(4): 625-635.e3, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34678160

RESUMEN

Compounds that modulate H2O2 reaction networks have applications as targeted cancer therapeutics, as a subset of cancers exhibit sensitivity to this redox signal. Previous studies to identify therapeutics that induce oxidants have relied upon probes that respond to many different oxidants in cells, and thus do not report on only H2O2, a redox signal that selectively oxidizes proteins. Here we use a genetically encoded fluorescent probe for human peroxiredoxin-2 (Prx2) oxidation in screens for small-molecule compounds that modulate H2O2 pathways. We further characterize cellular responses to several compounds selected from the screen. Our results reveal that some, but not all, of the compounds enact H2O2-mediated toxicity in cells. Among them, SMER3, an antifungal, has not been reported as an oxidant-inducing drug. Several drugs, including cisplatin, that previously have been shown to induce reactive oxygen species (ROS) do not appear to oxidize Prx2, suggesting H2O2 is not among the ROS induced by those drugs.


Asunto(s)
Neoplasias , Peroxirredoxinas , Detección Precoz del Cáncer , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Neoplasias/tratamiento farmacológico , Oxidantes , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
ACS Appl Mater Interfaces ; 13(48): 57962-57970, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34797978

RESUMEN

Catalytic redox reactions have been employed to enhance colorimetric biodetection signals in point-of-care diagnostic tests, while their time-sensitive visual readouts may increase the risk of false results. To address this issue, we developed a dual photocatalyst signal amplification strategy that can be controlled by a fixed light dose, achieving time-independent colorimetric biodetection in paper-based tests. In this method, target-associated methylene blue (MB+) photocatalytically amplifies the concentration of eosin Y by oxidizing deactivated eosin Y (EYH3-) under red light, followed by photopolymerization with eosin Y autocatalysis under green light to generate visible hydrogels. Using the insights from mechanistic studies on MB+-sensitized photo-oxidation of EYH3-, we improved the photocatalytic efficiency of MB+ by suppressing its degradation. Lastly, we characterized 100- to 500-fold enhancement in sensitivity obtained from MB+-specific eosin Y amplification, highlighting the advantages of using dual photocatalyst signal amplification.


Asunto(s)
Materiales Biomiméticos/química , Colorimetría , Eosina Amarillenta-(YS)/análisis , Azul de Metileno/química , Catálisis , Ensayo de Materiales , Estructura Molecular , Oxidación-Reducción , Procesos Fotoquímicos , Polimerizacion
13.
ACS Appl Mater Interfaces ; 13(33): 38990-39002, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34379400

RESUMEN

The ongoing COVID-19 pandemic has clearly established how vital rapid, widely accessible diagnostic tests are in controlling infectious diseases and how difficult and slow it is to scale existing technologies. Here, we demonstrate the use of the rapid affinity pair identification via directed selection (RAPIDS) method to discover multiple affinity pairs for SARS-CoV-2 nucleocapsid protein (N-protein), a biomarker of COVID-19, from in vitro libraries in 10 weeks. The pair with the highest biomarker sensitivity was then integrated into a 10 min, vertical-flow cellulose paper test. Notably, the as-identified affinity proteins were compatible with a roll-to-roll printing process for large-scale manufacturing of tests. The test achieved 40 and 80 pM limits of detection in 1× phosphate-buffered saline (mock swab) and saliva matrices spiked with cell-culture-generated SARS-CoV-2 viruses and is also capable of detection of N-protein from characterized clinical swab samples. Hence, this work paves the way toward the mass production of cellulose paper-based assays which can address the shortages faced due to dependence on nitrocellulose and current manufacturing techniques. Further, the results reported herein indicate the promise of RAPIDS and engineered binder proteins for the timely and flexible development of clinically relevant diagnostic tests in response to emerging infectious diseases.


Asunto(s)
Antígenos Virales/análisis , Prueba Serológica para COVID-19/métodos , Proteínas de la Nucleocápside/análisis , SARS-CoV-2/química , Biomarcadores/análisis , Técnicas Biosensibles , COVID-19/prevención & control , Celulosa/química , Ensayo de Inmunoadsorción Enzimática/métodos , Colorantes Fluorescentes/química , Humanos , Técnicas Analíticas Microfluídicas/métodos , Biblioteca de Péptidos , Unión Proteica
14.
J Am Chem Soc ; 143(30): 11544-11553, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34288684

RESUMEN

Exponential molecular amplification such as the polymerase chain reaction is a powerful tool that allows ultrasensitive biodetection. Here, we report a new exponential amplification strategy based on photoredox autocatalysis, where eosin Y, a photocatalyst, amplifies itself by activating a nonfluorescent eosin Y derivative (EYH3-) under green light. The deactivated photocatalyst is stable and rapidly activated under low-intensity light, making the eosin Y amplification suitable for resource-limited settings. Through steady-state kinetic studies and reaction modeling, we found that EYH3- is either oxidized to eosin Y via one-electron oxidation by triplet eosin Y and subsequent 1e-/H+ transfer, or activated by singlet oxygen with the risk of degradation. By reducing the rate of the EYH3- degradation, we successfully improved EYH3--to-eosin Y recovery, achieving efficient autocatalytic eosin Y amplification. Additionally, to demonstrate its flexibility in output signals, we coupled the eosin Y amplification with photoinduced chromogenic polymerization, enabling sensitive visual detection of analytes. Finally, we applied the exponential amplification methods in developing bioassays for detection of biomarkers including SARS-CoV-2 nucleocapsid protein, an antigen used in the diagnosis of COVID-19.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/análisis , Eosina Amarillenta-(YS)/análogos & derivados , Espectrometría de Fluorescencia/métodos , 3,3'-Diaminobencidina/química , Biomarcadores/química , Catálisis/efectos de la radiación , Eosina Amarillenta-(YS)/síntesis química , Eosina Amarillenta-(YS)/efectos de la radiación , Fluorescencia , Luz , Límite de Detección , Oxidación-Reducción/efectos de la radiación , Fosfoproteínas/análisis , Polietilenglicoles/química , Polimerizacion , Prueba de Estudio Conceptual , SARS-CoV-2/química
15.
ChemRxiv ; 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-34013166

RESUMEN

The ongoing COVID-19 pandemic has clearly established how vital rapid, widely accessible diagnostic tests are in controlling infectious diseases and how difficult and slow it is to scale existing technologies. Here, we demonstrate the use of the rapid affinity pair identification via directed selection (RAPIDS) method to discover multiple affinity pairs for SARS-CoV-2 nucleocapsid protein (N-protein), a biomarker of COVID-19, from in vitro libraries in 10 weeks. The pair with the highest biomarker sensitivity was then integrated into a 10-minute, vertical-flow cellulose paper test. Notably, the as-identified affinity proteins were compatible with a roll-to-roll printing process for large-scale manufacturing of tests. The test achieved 40 pM and 80 pM limits of detection in 1×PBS (mock swab) and saliva matrices spiked with cell-culture generated SARS-CoV-2 viruses and is also capable of detection of N-protein from characterized clinical swab samples. Hence, this work paves the way towards the mass production of cellulose paper-based assays which can address the shortages faced due to dependence on nitrocellulose and current manufacturing techniques. Further, the results reported herein indicate the promise of RAPIDS and engineered binder proteins for the timely and flexible development of clinically relevant diagnostic tests in response to emerging infectious diseases.

16.
Nat Commun ; 12(1): 3079, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035262

RESUMEN

Nanosensors have proven to be powerful tools to monitor single cells, achieving spatiotemporal precision even at molecular level. However, there has not been way of extending this approach to statistically relevant numbers of living cells. Herein, we design and fabricate nanosensor array in microfluidics that addresses this limitation, creating a Nanosensor Chemical Cytometry (NCC). nIR fluorescent carbon nanotube array is integrated along microfluidic channel through which flowing cells is guided. We can utilize the flowing cell itself as highly informative Gaussian lenses projecting nIR profiles and extract rich information. This unique biophotonic waveguide allows for quantified cross-correlation of biomolecular information with various physical properties and creates label-free chemical cytometer for cellular heterogeneity measurement. As an example, the NCC can profile the immune heterogeneities of human monocyte populations at attomolar sensitivity in completely non-destructive and real-time manner with rate of ~600 cells/hr, highest range demonstrated to date for state-of-the-art chemical cytometry.


Asunto(s)
Linfocitos B/metabolismo , Técnicas Biosensibles/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Microfluídica/métodos , Nanotecnología/métodos , Nanotubos de Carbono/química , Algoritmos , Transporte Biológico , Línea Celular , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Espectrometría Raman/métodos , Células U937
17.
ACS Sens ; 6(5): 1891-1898, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33822583

RESUMEN

Rapid and inexpensive serological tests for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antibodies are essential to conduct large-scale seroprevalence surveys and can potentially complement nucleic acid or antigen tests at the point of care. During the COVID-19 pandemic, extreme demand for traditional lateral flow tests has stressed manufacturing capacity and supply chains. Motivated by this limitation, we developed a SARS-CoV-2 antibody test using cellulose, an alternative membrane material, and a double-antigen sandwich format. Functionalized SARS-CoV-2 antigens were used as both capture and reporter binders, replacing the anti-human antibodies currently used in lateral flow tests. The test could provide enhanced sensitivity because it labels only antibodies against SARS-CoV-2 and the signal intensity is not diminished due to other human antibodies in serum. Three-dimensional channels in the assay were designed to have consistent flow rates and be easily manufactured by folding wax-printed paper. We demonstrated that this simple, vertical flow, cellulose-based assay could detect SARS-CoV-2 antibodies in clinical samples within 15 min, and the results were consistent with those from a laboratory, bead-based chemiluminescence immunoassay that was granted emergency use approval by the US FDA.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Celulosa , Humanos , Inmunoensayo , Pandemias , Sensibilidad y Especificidad , Estudios Seroepidemiológicos
18.
Commun Med (Lond) ; 1: 46, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35602218

RESUMEN

Background: Neutralizing antibodies (NAbs) prevent pathogens from infecting host cells. Detection of SARS-CoV-2 NAbs is critical to evaluate herd immunity and monitor vaccine efficacy against SARS-CoV-2, the virus that causes COVID-19. All currently available NAb tests are lab-based and time-intensive. Method: We develop a 10 min cellulose pull-down test to detect NAbs against SARS-CoV-2 from human plasma. The test evaluates the ability of antibodies to disrupt ACE2 receptor-RBD complex formation. The simple, portable, and rapid testing process relies on two key technologies: (i) the vertical-flow paper-based assay format and (ii) the rapid interaction of cellulose binding domain to cellulose paper. Results: Here we show the construction of a cellulose-based vertical-flow test. The developed test gives above 80% sensitivity and specificity and up to 93% accuracy as compared to two current lab-based methods using COVID-19 convalescent plasma. Conclusions: A rapid 10 min cellulose based test has been developed for detection of NAb against SARS-CoV-2. The test demonstrates comparable performance to the lab-based tests and can be used at Point-of-Care. Importantly, the approach used for this test can be easily extended to test RBD variants or to evaluate NAbs against other pathogens.

19.
ACS Appl Bio Mater ; 4(1): 392-398, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35014290

RESUMEN

Whatman No. 1 chromatography paper is widely used as a substrate for cellulose-based immunoassays. The immobilized proteins are used to capture target biomarkers for detection. However, alternative paper substrates may facilitate mass production of immunoassays as diagnostic tests. Here, we assessed the physical characteristics and protein immobilization capabilities of different commercial papers. Some substrates fulfilled our design criteria, including adequate flow rate and sufficient protein immobilization for efficient target capture. This study demonstrates that a variety of paper substrates can be bioactivated and used to capture target biomarkers, enabling development of affordable diagnostic tests from a range of starting materials.


Asunto(s)
Celulosa/metabolismo , Proteínas Inmovilizadas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Biomarcadores/análisis , Celulosa/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Inmovilizadas/análisis , Proteínas Inmovilizadas/genética , Inmunoensayo/métodos , Mutagénesis , Papel , Sistemas de Atención de Punto , Dominios Proteicos
20.
Bioeng Transl Med ; 5(3): e10184, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005744

RESUMEN

Mitochondrial NADPH protects cells against mitochondrial oxidative stress by serving as an electron donor to antioxidant defense systems. However, due to technical challenges, it still remains unknown as to the pool size of mitochondrial NADPH, its dynamics, and NADPH/NADP+ ratio. Here, we have systemically modulated production rates of H2O2 in mitochondria and assessed mitochondrial NADPH metabolism using iNap sensors, 13C glucose isotopic tracers, and a mathematical model. Using sensors, we observed decreases in mitochondrial NADPH caused by excessive generation of mitochondrial H2O2, whereas the cytosolic NADPH was maintained upon perturbation. We further quantified the extent of mitochondrial NADPH/NADP+ based on the mathematical analysis. Utilizing 13C glucose isotopic tracers, we found increased activity in the pentose phosphate pathway (PPP) accompanied small decreases in the mitochondrial NADPH pool, whereas larger decreases induced both PPP activity and glucose anaplerosis. Thus, our integrative and quantitative approach provides insight into mitochondrial NADPH metabolism during mitochondrial oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...